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Tight-binding study of stacking fault energies and the Rice criterion of ductility in the fcc metals
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We have used the Naval Research Laboratory~NRL! tight-binding~TB! method to calculate the generalized
stacking fault energy and the Rice ductility criterion in the fcc metals Al, Cu, Rh, Pd, Ag, Ir, Pt, Au, and Pb.
The method works well for all classes of metals, i.e., simple metals, noble metals, and transition metals. We
compared our results with full potential linear-muffin-tin orbital and embedded atom method~EAM! calcula-
tions, as well as experiment, and found good agreement. This is impressive, since the NRL-TB approach only
fits to first-principles full-potential linearized augmented plane-wave equations of state and band structures for
cubic systems. Comparable accuracy with EAM potentials can be achieved only by fitting to the stacking fault
energy.
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I. INTRODUCTION

The relationship between electronic structure and m
chanical properties of materials has received considerabl
tention, with emphasis on the development of atomistic m
els of fracture and deformation.1 The interfacial energetics
under different modes of displacement, e.g., shear and cl
age, are often key factors in determining the mechanical
sponse of a material to applied stress. The stability of sta
ing faults on the slip planes of a crystal is intimate
connected to the mobility of dislocations on these planes.
the other hand, the ease for cleavage fracture is related to
ideal cleavage stress and the ideal cleavage energy~which is
equal to the total surface energygs of the two cleaved sur-
face planes!. Using a Peierls type of analysis, Rice a
coworkers2–4 developed a simple criterion for determinin
the intrinsic ductile versus brittle behavior of materials. R
proposed that a simple rule to measure the brittle versus
tile behavior of materials is the ratio of two planar fau
energies,gs /gus , which determines the competition betwe
dislocation emission from a crack tip and crack cleava
Dislocation nucleation is characterized by the unstable sta
ing fault energygus , which corresponds to the lowest ener
barrier encountered in sliding one half of a crystal relative
another along a slip plane.

In close-packed structures, both stable and unstable st
ing faults are produced by the relative translation of t
parts of a crystal through a fault vectorfW , which is a rational
fraction of a lattice vector. The fault is introduced by cuttin
a perfect crystal block along the fault plane and shifting
upper part with respect to the lower part by the vectorfW . The
energy surface obtained as a function of the fault vectorfW is
called the generalized stacking fault~GSF! energy surface.5

Stable intrinsic stacking faults are local energy minima
the GSF surface. For the~111! slip plane in fcc systems, th
stable stacking fault configuration corresponds to a slip
a/A6 in the ^121& direction resulting in the stacking
ABCuBCABC; gus is the lowest energy barrier that needs
PRB 610163-1829/2000/61~7!/4894~4!/$15.00
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be crossed for the slip from the ideal configuration to t
intrinsic stacking fault in thê121& direction. Experimentally
observed edge dislocations in fcc metals split and form
intrinsic stacking fault ribbon bounded by the two Shockl
partials. The intrinsic stacking fault energy,g is , determines
the equilibrium separation between the two partials.6 In con-
trast to the rest of the GSF surface, the energies of the st
stacking fault configurations can be experimentally m
sured.

The GSF surface plays an important role in propos
models for the brittle-ductile transition7,8 and they can also
be used for calibration of model potentials for large-sc
simulations and as input to quasi-continuum models.9 At
present, the GSF energies can be calculated using emp
potentials, such as the embedded-atom method~EAM! or
electronic structure methods.10,11The empirical potentials are
expedient but they are constructed by fitting physical pr
erties obtained from experimental measurements orab initio
calculations. Moreover, these potentials may provide a g
description of the energetics of a system when the den
distribution of atoms in the system is close to equilibriu
When atoms move far away from equilibrium~such as in the
case of stress! or when defects are present, these potent
meet their limitations. For example, the current formulati
of the EAM method underestimatesg is in Al compared to
the correspondingab initio value, thus yielding a dissocia
tion for the edge dislocation in disagreement both with e
periment and theab initio calculations.10 An improved EAM
value forg is can be obtained by including this energy in th
EAM database.10,11 The more accurate first-principles ele
tronic structure calculations, on the other hand, are com
tationally expensive. We would therefore like to find
method that is close in accuracy to first-principles metho
but computationally more efficient.

The NRL tight-binding method12–16 meets this criterion
for a large number of systems. The purpose of this work is
employ the tight-binding~TB! total-energy method to calcu
late the GSF energies for fcc metals and to compare th
both with results ofab initio calculations based on the full
potential linear-muffin-tin-orbital~FLMTO! method17,18 and
experiment, when available. The fcc metals studied hav
4894 ©2000 The American Physical Society
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wide range of unstable and stable stacking fault energy
ues. For example, Al and Cu have similargus but quite dif-
ferentg is , while Ir ~a brittle system! has very largegus and
g is . We have also calculated the ratiogs /gus across the
series. Overall, the good agreement found between the
results and those of theab initio calculations indicates tha
the TB method can be used for the study of fault energ
accurately and expediently, and puts the TB method
firmer basis for future investigations of defects and fractu

II. STACKING FAULT CALCULATIONS

We model thê 121& slip on a~111! slip plane of an fcc
solid by constructing a supercell which consists of n
close-packed~111! planes of atoms. One atom in each pla
is part of the basis of the supercell. The primitive vectors
the supercell take the form

a15
1

2
aŷ1

1

2
aẑ

a25
1

2
ax̂1

1

2
aẑ ~1!

a35S 31
q

6Dax̂1S 31
q

6Daŷ2S 32
q

3Daẑ ,

whereq represents the stacking fault variable, and repres
a displacement of the atoms in the boundary layer along
fault vectorfW in the^112̄& direction. Whenq50 the periodic
crystal is a perfect fcc system. Whenq51, the atoms at the
interface are in an hcp ordering, that is, the stacking at
interface isABCBCArather thanABCABC.

Total energies were calculated using the NRL tig
binding ~TB! total energy method.12–16,19In this method we
simultaneously fit the energy bands and the total energy f
first-principles full potential linearized augmented plan
wave ~LAPW! calculations20,21 to a nonorthogonalspd TB
Hamiltonian containing density-dependent on-site terms
distance-dependent hopping and overlap parameters. Th
rameters for the transition and noble metals are determ
by requiring that the TB method reproduce the fir
principles total energies and electronic structures of fcc,
bcc as a function of volume. For Pb~Ref. 16! we add the
simple cubic structure to the database, and for Al~Ref. 14!
we included data from the simple cubic, diamond, and h
structures. This method has been shown to give relia
structural behavior, elastic constants, phonon frequencie12

vacancy formation energies, and surface energies for the
metals, even for structures not included in the original da
base. We use the previously published parameters13,16 for
most elements. We have developed new parameters fo
and Au by including the simple cubic structure in the
along with the fcc and bcc structures, and by fitting to
wider range of lattice constants.22 The parameters for Al dif-
fer from the published parameters14 in that we have refit the
parameters so that thed statet2g and eg on-site terms are
identical, eliminating orientation effects seen in the older
rameters.

As in all band structure total energy methods, the cal
lated total energy is determined by summing the eigenva
l-
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over the first Brillouin zone of the lattice. We perform th
calculation using a regular, uniformly spaced, and symm
trized k-point mesh, including the origin. The tight-bindin
method is computationally very efficient, so to insure co
vergence we have used a large number ofk points, 4730 in
the irreducible part of the Brillouin zone of Eq.~1!. This is
equivalent to using a mesh of 1469k points in the irreducible
Brillouin zone of the fcc lattice. The total energy was calc
lated by weighting the eigenvalues with a Fermi distributi
at a temperature of 5 mRy and then extrapolating to z
temperature.23,24

In Fig. 1 we show the stacking fault energies for all of o
calculations as a function of the stacking fault variableq in
Eq. ~1!. We note that the behavior of the stacking fault e
ergies is quite reasonable. That is, the stacking fault ener
for Ir are much larger than the corresponding energies
Au. We did not allow for relaxation in these systems, exc
for the case of the unstable stacking fault energy of Au a
Ir. In this case, the relaxation reduced the unstable stac
fault energy by about 30% and 40%, respectively.

We then compared the results of the tight-binding para
etrization to first-principles FLMTO calculations for Al, Ag
and Ir, using the same stacking fault geometry. In
FLMTO method no shape approximation is made to the
tential and the charge density.17,18 The basis set, charge den
sity, and potential are expanded in cubic harmonics ins
non-overlapping muffin-tin spheres and in Fourier series
the interstitial region. Spherical harmonic expansions w
carried throughl max58 for the bases. Spin-orbit couplin
was included self consistently. The volume in the muffin-
spheres radius was kept constant for all deformations
make the basis set as consistent as possible in calcula
energies for different deformations. Exchange and corre
tion were treated in the local-density approximation us
the Ceperly and Alder25 exchange-correlation functional a
parametrized by Perdew and Zunger.26 The calculations are
performed at the theoretically determined in-plane latt
constant to eliminate the externally imposed stress assoc
with a nonequilibrium lattice constant. Multiple sets of e
ergy parameters and tail parameters were used. The lo

FIG. 1. Stacking fault energy as a function of the parameterq in
Eq. ~1! for the elementalfcc metals, determined by the NRL tight
binding method~Refs. 12–16 and 19!. The labelsgus andg is indi-
cate positions of the unstable and intrinsic stacking faults, resp
tively, while fcc indicates the position of the ground state structu
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energy is appropriate for semicore states and the highe
valence states. For the reciprocal space integration we us
uniform k-point grid of ~15,15,3! divisions along the recip-
rocal lattice directions according to the special po
method.27

Figure 2 compares the first-principles and tight-bindi
calculations. We see that the tight-binding results are qu
tatively correct, that is, the stacking fault energies of
elements are ordered correctly. The results for Ir are part
larly accurate, especially near the unstable stacking fault
sition. In addition, because of the reduced basis-set size
the elimination of the self-consistency cycle, the tigh
binding method is approximately 1,000 times faster th
FLMTO for comparable systems. Thus the tight-bindi
method can handle much larger systems than a fi
principles calculation, with nearly the same accuracy.

The intrinsic (q51 in equation 1! stacking fault energies
g is are given in Table I, where they are compared to val
derived from experimental observations of dislocation str
ture and isotropic elasticity theory.28,29 Again, the results are
qualitatively correct.

FIG. 2. Stacking fault energy as a function of the parameterq of
Eq. ~1!, as determined by the NRL tight-binding method~Refs.
12–16 and 19! and from first-principles FLMTO calculations~Refs.
17 and 18!. Tight-binding results are represented by the fitt
curves from Fig. 1, and the first-principles results are marked
points.

TABLE I. Intrinsic stacking fault energiesg is ~in mJ/m2) of the
nonmagnetic fcc transition metals, calculated from our tight-bind
parameters, first-principles FLMTO~Refs. 17 and 18!, and values
derived from experiment. Unless otherwise noted, the experime
values are from Murr~Ref. 28!.

Element Tight-Binding FLMTO Experiment

Al 96 164 166
Cu 18 45~Ref. 28!, 78 ~Ref. 29!
Rh 344
Pd 166
Ag 29 46 16
Ir 569 405 300
Pt 373
Au 50
Pb 58
or
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III. INTRINSIC DUCTILITY

Rice3 has shown that under ‘‘Mode I’’ loading a metal
intrinsically ductile if the parameter

D50.3
gs

gus
.1 , ~2!

wheregs is the surface energy of a freshly cleaved surfa
andgus is the unstable stacking fault energy. This is a re
sonable criterion. If the surface energy is small compared
the unstable stacking fault energy then under applied st
the metal will tend to form surfaces, i.e., crack, rather th
shear so as to nucleate dislocations.

For our purposes we can take the unstable stacking f
energygus to be the peak of the curve in Fig. 1. For surfa
energies, we take the unrelaxed~111! surface energies pre
viously computed from our tight-binding parameters.13,14

The results are shown in Table II. Since we have neglec
relaxation of both the surface and the stacking fault the
sults can be only qualitatively correct, but the results
consistent with our expectations. The three noble metals,
Ag, and Au, all haveD.3. Of these, Au, the most ductile
metal, has the largest ductility parameter. These are follow
by Pt, Pb, and Al, all withD'1.5. These metals are consid
erably less ductile than the noble metals, but substanti
more ductile than the remaining metals, Rh, Pd, and
which all haveD'1. These results indicate that the tigh
binding Hamiltonian can be used to quickly estimate the d
tility parameter of a metal.

IV. CONCLUSION

We have shown that the NRL tight-binding method
very successful in predicting both intrinsic and unsta
stacking fault energies of the fcc metals on the right-ha
side of the periodic table. This occurs without the introdu
tion of any stacking fault configurations into the tigh
binding database. Indeed, excepting Aluminum, the tig
binding parameters are determined by fitting to a fir
principles database containing only electronic structure
total energy information for cubic systems. In contrast,
successful EAM schemes10,11 must includeg is in the data-
base in order to correctly predict the stacking fault energ

y
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TABLE II. The unrelaxed~111! surface energygs , unstable
stacking fault energygus , and the ductility parameterD from Eq.
~2!. The values ofgs were obtained from previous calculation
using our tight-binding parameters~Refs. 13 and 14!. Thegus were
taken from the maximum of a polynomial fit to the points in Fig.
gs andgus are in units of mJ/m2.

Element gs ~Refs. 13 and 14! gus D

Al 870 176 1.50
Cu 1730 162 3.24
Rh 2460 714 1.04
Pd 1570 439 1.08
Ag 1140 108 3.20
Ir 2590 902 0.87
Pt 2510 497 1.53
Au 1480 129 3.48
Pb 888 166 1.59
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