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Tight-binding study of stacking fault energies and the Rice criterion of ductility in the fcc metals
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We have used the Naval Research LaboratbifgL) tight-binding(TB) method to calculate the generalized
stacking fault energy and the Rice ductility criterion in the fcc metals Al, Cu, Rh, Pd, Ag, Ir, Pt, Au, and Pb.
The method works well for all classes of metals, i.e., simple metals, noble metals, and transition metals. We
compared our results with full potential linear-muffin-tin orbital and embedded atom méiAdd) calcula-
tions, as well as experiment, and found good agreement. This is impressive, since the NRL-TB approach only
fits to first-principles full-potential linearized augmented plane-wave equations of state and band structures for
cubic systems. Comparable accuracy with EAM potentials can be achieved only by fitting to the stacking fault
energy.

[. INTRODUCTION be crossed for the slip from the ideal configuration to the
intrinsic stacking fault in thé121) direction. Experimentally
The relationship between electronic structure and meobserved edge dislocations in fcc metals split and form an
chanical properties of materials has received considerable dfitrinsic stacking fault ribbon bounded by the two Shockley
tention, with emphasis on the development of atomistic mogPartials. The intrinsic stacking fault energy,, determines

els of fracture and deformatidnThe interfacial energetics the equilibrium separation between the two pa_lrt?ah;.con-
: ; trast to the rest of the GSF surface, the energies of the stable
under different modes of displacement, e.g., shear and clea

¥tacking fault configurations can be experimentally mea-
age, are often key factors in determining the mechanical rez g 9 P Y

sponse of a material Fo applied stress. The sta'bili.ty .of stack- Thé GSF surface plays an important role in proposed
ing faults on the slip planes of a crystal is intimately models for the brittle-ductile transitiéfi and they can also
connected to the mobility of dislocations on these planes. Obe used for calibration of model potentials for large-scale
the other hand, the ease for cleavage fracture is related to ti#mulations and as input to quasi-continuum modefst.
ideal cleavage stress and the ideal cleavage erargigh is  present, the GSF energies can be calculated using empirical
equal to the total surface energy of the two cleaved sur- potentials, such as the embedded-atom metfiodM) or
face planes Using a Peierls type of analysis, Rice and electronic structure method$™ The empirical potentials are
coworkeré™ developed a simple criterion for determining expedient but they are constructed by fitting physical prop-
the intrinsic ductile versus brittle behavior of materials. Riceerties obtained from experimental measuremenisboinitio
proposed that a simple rule to measure the brittle versus du€@lculations. Moreover, these potentials may provide a good
tile behavior of materials is the ratio of two planar fault description of the energetics of a system when the density

energiesy./v,., which determines the competition between distribution of atoms in the system is close to equilibrium.
giesys! Yus P When atoms move far away from equilibriugsuch as in the

dislocation emission from a crack tip and crack cleavage. f stres hen defect t th tential
Dislocation nucleation is characterized by the unstable stackease Of stréssor when defects are€ present, these potentials

. . meet their limitations. For example, the current formulation
ing fault energyy, s, which corresponds to the lowest energy of the EAM method underestimates, in Al compared to

barrier encountered in sliding one half of a crystal relative toy,, correspondingb initio value, thus yielding a dissocia-

another along a slip plane. B

I ked both stabl q bl ion for the edge dislocation in disa%reement both with ex-
In close-packed structures, both stable and unstable staCgejment and theb initio calculations® An improved EAM

ing faults are produced by the rela;uve translation of two, 51, for y;s can be obtained by including this energy in the
parts of a crystal through a fault vectbrwhich is a rational EAM databasé®!* The more accurate first-principles elec-
fraction of a lattice vector. The fault is introduced by cutting tronic structure calculations, on the other hand, are compu-
a perfect crystal block along the fault plane and shifting thetationally expensive. We would therefore like to find a

upper part with respect to the lower part by the vedtofhe ~ Method that is close in accuracy to first-principles methods,

energy surface obtained as a function of the fault vettisr but computati_onally_ more efficie;jr:}t. 16 ; T
called the generalized stacking faiBSP energy surface. The NRL tight-binding meth meets this criterion

for a large number of systems. The purpose of this work is to

Stable intrinsic stacking faults are local energy minima OMemploy the tight-binding TB) total-energy method to calcu-

the GSF surface. For th@11) slip plane in fcc systems, the |56 the GSF energies for fcc metals and to compare them
stable stacking fault configuration corresponds to a slip ofyoth with results ofab initio calculations based on the full-
a/\6 in the (121) direction resulting in the stacking potential linear-muffin-tin-orbitalFLMTO) method” 8 and
ABC|IBCABG y,sis the lowest energy barrier that needs toexperiment, when available. The fcc metals studied have a
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wide range of unstable and stable stacking fault energy val- foo Tus Yis
. K . 1000 T
ues. For example, Al and Cu have similgy, but quite dif- v CAI
ferenty;s, while Ir (a brittle systemhas very largey,s and ¥ Fh o7 Og
vis. We have also calculated the ratig/vy,s across the goo O A9 O °
series. Overall, the good agreement found between the TE _ < PI; TR
results and those of thab initio calculations indicates that g ggo| 2 Au * *
A Pb

the TB method can be used for the study of fault energies €

accurately and expediently, and puts the TB method on 5400
g |

firmer basis for future investigations of defects and fracture. §
[l. STACKING FAULT CALCULATIONS 200 -
We model the(121) slip on a(11)) slip plane of an fcc )
solid by constructing a supercell which consists of nine 001) 0.2 04 0.6 08 10
close-packed111) planes of atoms. One atom in each plane Stacking Displacement q

is part of the basis of the supercell. The primitive vectors of

the supercell take the form FIG. 1. Stacking fault energy as a function of the paramegiar

Eq. (1) for the elementafcc metals, determined by the NRL tight-

1 . 1. binding methodRefs. 12—-16 and 19The labelsy,s and y;s indi-
a,=-ay+-az cate positions of the unstable and intrinsic stacking faults, respec-
2 2 tively, while fcc indicates the position of the ground state structure.
azzla;(.;_ EaAz (1)  over the first Brillouin zone of the lattice. We perform this
2 2 calculation using a regular, uniformly spaced, and symme-
trized k-point mesh, including the origin. The tight-binding
a) - a) - aq) -~ method is computationally very efficient, so to insure con-
ag=|3+ 5%t 3+ 5/3Y~ 3- 3/3%, vergence we have used a large numbek pbints, 4730 in

the irreducible part of the Brillouin zone of E¢l). This is

whereq represents the stacking fault variable, and represenigquivalent to using a mesh of 14&8®oints in the irreducible
a displacement of the atoms in the boundary layer along thgyillouin zone of the fcc lattice. The total energy was calcu-
fault vectorf in the(112) direction. Whermg=0 the periodic  lated by weighting the eigenvalues with a Fermi distribution
crystal is a perfect fcc system. Whege=1, the atoms at the at a temperature of 5 mRy and then extrapolating to zero
interface are in an hcp ordering, that is, the stacking at théemperaturé®?*
interface iSABCBCArather thanPABCABC In Fig. 1 we show the stacking fault energies for all of our

Total energies were calculated using the NRL tight-calculations as a function of the stacking fault variatpli
binding (TB) total energy metho&?*6*°In this method we Eg. (1). We note that the behavior of the stacking fault en-
simultaneously fit the energy bands and the total energy frorergies is quite reasonable. That is, the stacking fault energies
first-principles full potential linearized augmented plane-for Ir are much larger than the corresponding energies for
wave (LAPW) calculationd’? to a nonorthogonaspd TB  Au. We did not allow for relaxation in these systems, except
Hamiltonian containing density-dependent on-site terms antbr the case of the unstable stacking fault energy of Au and
distance-dependent hopping and overlap parameters. The ga- In this case, the relaxation reduced the unstable stacking
rameters for the transition and noble metals are determinefhult energy by about 30% and 40%, respectively.
by requiring that the TB method reproduce the first- We then compared the results of the tight-binding param-
principles total energies and electronic structures of fcc, anétrization to first-principles FLMTO calculations for Al, Ag,
bcc as a function of volume. For RiRef. 16 we add the and Ir, using the same stacking fault geometry. In the
simple cubic structure to the database, and fo(R&f. 14 FLMTO method no shape approximation is made to the po-
we included data from the simple cubic, diamond, and hcpential and the charge density*® The basis set, charge den-
structures. This method has been shown to give reliablsity, and potential are expanded in cubic harmonics inside
structural behavior, elastic constants, phonon frequenties,non-overlapping muffin-tin spheres and in Fourier series in
vacancy formation energies, and surface energies for the fdbe interstitial region. Spherical harmonic expansions were
metals, even for structures not included in the original datacarried throughl,,,,=8 for the bases. Spin-orbit coupling
base. We use the previously published paramktétdor  was included self consistently. The volume in the muffin-tin
most elements. We have developed new parameters for Gpheres radius was kept constant for all deformations to
and Au by including the simple cubic structure in the fit make the basis set as consistent as possible in calculating
along with the fcc and bcc structures, and by fitting to aenergies for different deformations. Exchange and correla-
wider range of lattice constantéThe parameters for Al dif- tion were treated in the local-density approximation using
fer from the published parametétsn that we have refit the the Ceperly and AldéP exchange-correlation functional as
parameters so that the statet,, and ey on-site terms are parametrized by Perdew and Zung®iThe calculations are
identical, eliminating orientation effects seen in the older paperformed at the theoretically determined in-plane lattice
rameters. constant to eliminate the externally imposed stress associated

As in all band structure total energy methods, the calcuwith a nonequilibrium lattice constant. Multiple sets of en-
lated total energy is determined by summing the eigenvaluesrgy parameters and tail parameters were used. The lower
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1000fcc Yus Yis TABLE II. The unrelaxed(111) surface energyys, unstable
+ Al (FLMTO) ‘ stacking fault energyy,s, and the ductility parametdd from Eq.
» ﬁg((T,PL)MTO) B (2). The values ofys were obtained from previous calculations
800 | Ag (TB) . . using our tight-binding parametefRefs. 13 and 14 The y, s were
- :: 5%?’”0) .'D' taken from the maximum of a polynomial fit to the points in Fig. 1.
€ 600 o | vs and y,s are in units of mJ/rh
% Element vs (Refs. 13 and 14 Yus D
g 400 | , g1
| y Al 870 176 1.50
Cu 1730 162 3.24
200 ¢ Rh 2460 714 1.04
Pd 1570 439 1.08
Y i . Ag 1140 108 3.20
00 02 Stac?{i?\g Displace?ﬁ?ent q 08 10 Ir 2590 902 0.87
Pt 2510 497 1.53
FIG. 2. Stacking fault energy as a function of the paramgtefr Au 1480 129 3.48
Eqg. (1), as determined by the NRL tight-binding meth@gefs. Pb 888 166 1.59

12-16 and 1Pand from first-principles FLMTO calculatioriRefs.
17 and 18 Tight-binding results are represented by the fitted
curves from Fig. 1, and the first-principles results are marked by

points. Rice® has shown that under “Mode I” loading a metal is

energy is appropriate for semicore states and the higher fdptrlnsmally ductile if the parameter

[Il. INTRINSIC DUCTILITY

valence states. For the reciprocal space integration we used a Vs

uniform k-point grid of (15,15,3 divisions along the recip- D=0-3y—>1 : 2
rocal lattice directions according to the special point us

method?’ where vy is the surface energy of a freshly cleaved surface,

Figure 2 compares the first-principles and tight-bindingand y,s is the unstable stacking fault energy. This is a rea-
calculations. We see that the tight-binding results are qualisonable criterion. If the surface energy is small compared to
tatively correct, that is, the stacking fault energies of thethe unstable stacking fault energy then under applied stress
elements are ordered correctly. The results for Ir are particithe metal will tend to form surfaces, i.e., crack, rather than
larly accurate, especially near the unstable stacking fault pashear so as to nucleate dislocations.
sition. In addition, because of the reduced basis-set size and For our purposes we can take the unstable stacking fault
the elimination of the self-consistency cycle, the tight-energyy,s to be the peak of the curve in Fig. 1. For surface
binding method is approximately 1,000 times faster tharenergies, we take the unrelaxétll) surface energies pre-

FLMTO for comparable systems. Thus the tight-bindingviously computed from our tight-binding parametéts?
method can handle much larger systems than a firstfhe results are shown in Table Il. Since we have neglected

principles calculation, with nearly the same accuracy. relaxation of both the surface and the stacking fault the re-

The intrinsic @=1 in equation 1 stacking fault energies Sults can be only qualitatively correct, but the results are
7is are given in Table |, where they are compared to valuegonsistent with our expectations. The three noble metals, Cu,
derived from experimental observations of dislocation strucAg, and Au, all haveD>3. Of these, Au, the most ductile
ture and isotropic elasticity theof#?° Again, the results are  metal, has the largest ductility parameter. These are followed
qualitatively correct. by Pt, Pb, and Al, all wittD~1.5. These metals are consid-

erably less ductile than the noble metals, but substantially

TABLE |. Intrinsic stacking fault energieg;s (in mJ/nt) of the more ductile than the remaining metals, Rh, Pd, and Ir,
nonmagnetic fcc transition metals, calculated from our tight-bindingwhich all haveD~1. These results indicate that the tight-
parameters, first-principles FLMT(Refs. 17 and 18 and values  hinding Hamiltonian can be used to quickly estimate the duc-
derived from experiment. Unless otherwise noted, the experimentq“ity parameter of a metal.
values are from MurfRef. 28.

IV. CONCLUSION

Element Tight-Binding FLMTO Experiment

We have shown that the NRL tight-binding method is
Al 96 164 166 very successful in predicting both intrinsic and unstable
Cu 18 45(Ref. 28, 78 (Ref. 29 stacking fault energies of the fcc metals on the right-hand
Rh 344 side of the periodic table. This occurs without the introduc-
Pd 166 tion of any stacking fault configurations into the tight-
Ag 29 46 16 binding database. Indeed, excepting Aluminum, the tight-
Ir 569 405 300 binding parameters are determined by fitting to a first-
Pt 373 principles database containing only electronic structure and
Au 50 total energy information for cubic systems. In contrast, the
Pb 58 successful EAM schem¥s'! must includey;s in the data-

base in order to correctly predict the stacking fault energies.
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