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Abstract
The Naval Research Laboratory (NRL) tight-binding (TB) method was

applied to tin, a material which is known to exist in the diamond structure (¬-
Sn) at zero temperature and low pressures. A small change in the pressure drives
tin to the ­ -Sn structure, which is stable up to 9.5 GPa at room temperature. In
this paper we present the NRL-TB parameterization for tin, applying it to the
study of the bulk properties of both ¬-Sn and ­ -Sn. The parameters were
determined by ®tting to a database of ®rst-principles band structures and total
energies, generated using the general potential linearized augmented plane-wave
method for the fcc, bcc, sc and diamond structures, with limited information from
calculations of the ­ -Sn phase. We report the success of this method in predicting
the two stable structures ¬-Sn and ­ -Sn in the correct order, even though these
structures have a small energy di� erence. We also discuss the NRL-TB method’s
ability to calculate electronic band structures and density of states. We con®rm
the semimetallic and metallic character for the ¬-Sn and bcc phases respectively.
We also calculate the elastic constants of ¬-Sn and ­ -Sn, as well as several high-
symmetry point phonon frequencies of ¬-Sn and compare our results with
experiment. Finally, TB molecular dynamics calculations are used to explore
the behaviour of tin at ®nite temperatures. We compute the temperature
dependence of the Debye±Waller B factor, ®nding it to be consistent with
experiment up to room temperature.

} 1. Introduction
Tin has the atomic number Z ˆ 50 and four electrons in the valence band. The

ground state, grey tin (¬-Sn), has the diamond structure (Villars and Calvert 1991),
in common with the lighter elements in column IV A of the periodic table. Tin also
exists in the ­ -Sn structure (white tin) at atmospheric pressure above 13°C. The ­ -Sn
phase (space group, I41=amd ; Pearson symbol, tI4; Strukturbericht designation, A5)
is a tetragonal distortion of diamond with two atoms per unit cell}. It is stable up to
9.5 GPa at room temperature, where it transforms to a bct form, followed by a
transformation to the cubic bcc structure (Olijnyk and Holzapfel 1984,
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Desgreniers et al. 1989, Villars and Calvert 1991). These temperature- and pressure-
driven phase transformations have caused tin to be of considerable experimental and
theoretical interest.

Christensen and Methfessel (1993) performed ab initio calculations using the full-
potential (FP) linear mu� n-tin orbital (LMTO) method. They reported all the tran-
sitions sequence observed experimentally, ¬-Sn ! ­ -Sn ! bct ! bcc. For large sys-
tems, computations using FP-LMTO or any other self-consistent ®rst-principles
method are slow, and a faster method is desirable. In this paper we use the Naval
Research Laboratory (NRL) tight-binding (TB)y (Cohen et al. 1994, Mehl and
Papaconstantopoulo s 1996, Kirchho� et al. 2001) procedure to map the results of
a database of ®rst-principles calculations on to a set of TB parameters, which can
then be used to determine the mechanical and electronic properties of arbitrary
structures. The NRL-TB method has been successfully used for a variety of materi-
als, including the transition metals (Mehl and Papaconstantopoulo s 1996), sp metals
(Yang et al. 1994), and the semiconductors carbon and silicon (Papaconstantopoulo s
et al. 1998, Bernstein et al. 2000). The elastic moduli, equilibrium lattice constant,
vacancy formation energy, surface energy and phonon spectra predicted by these
parameters were found to be in very good agreement with experiment. In the present
work, we take the same approach to study the bulk properties of tin, which is known
to be a semiconductor with a zero bandgap (semimetal) in the ¬-Sn phase, and a
metal in the ­ -Sn, bct and bcc structures (Donohue 1974).

This paper is structured as follows: we outline the theory of the NRL-TB method
in } 2, describe the numerical methods used in the ®rst-principles and the NRL-TB
calculations in } 3, present our results and discussion in } 4 and conclude with a
summary in } 5.

} 2. Theory
The aim of the NRL-TB method is twofold: ®rst, to reproduce the electronic-

band structure of a system as was done in earlier TB work (Papaconstantopoulo s
1986), together with the total energy of the system; second, to make sure that these
parameters are transferable from one structure to another. To do this, we use the
two-centre formalism of Slater and Koster (SK) (1954) , including environmentally
sensitive on-site terms. This section describes the procedure in some detail.

We begin with the expression of the total energy found in density functional
theory (Hohenberg and Kohn 1964, Kohn and Sham 1965):

E‰n…r†Š ˆ
X

occ

°n ‡ F ‰n…r†Š …1†

where the ®rst term is a sum over the occupied single-particle Kohn±Sham orbitals
and F represents the remaining terms of the total energy that depend on the charge
density n…r†. We note that there is a certain ambiguity in the values of the two terms,
since the Kohn±Sham potential can be uniformly shifted by an arbitrary constant.
We eliminate this ambiguity by de®ning a particular shift

V0…S; a† ˆ F ‰n…r†Š
Ne

; …2†
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y The TB parameters and computer codes used in this paper are available from the DoD
Tight-Binding Home Page, http://cst-www.nrl.navy.mil/bind/dodtb.
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where Ne is the number of electrons. Note that V0 depends on the structure S and
lattice parameters a. Shifting the eigenvalues by V0 allows us to write the total energy
as

E‰n…r†Š ˆ
X

occ

° 0
n; …3†

where ° 0
n ˆ °n ‡ V0. The result is that the sum of the shifted eigenvalues is equal to

the total energy, and therefore we need only concern ourselves with the shifted
eigenvalues when deriving our TB parameters. Our goal is to construct a non-ortho-
gonal (TB) Hamiltonian whose eigenvalues are the ° 0:

H ° 0S ˆ 0; …4†
where the matrix elements of H and S are derived from the two-centre SK para-
meters (Slater and Koster 1954, Papaconstantopoulo s 1986), which include on-site
terms, hopping integrals and overlap integrals. For tin we use only the 5s and 5p
orbitals on each atom to construct the TB basis.

In the NRL-TB method we construct the on-site parameters of H so that they are
diagonal and sensitive to the local environment (Sigalas and Papaconstantopoulo s
1994, Mehl and Papaconstantopoulo s 1995, 1996). We write the on-site term of the
orbitals with angular momentum ` of atom i as

hi`…»i† ˆ ¬` ‡ ­ `»
2=3
i ‡ ®`»

4=3
i ‡ ¯`»

2
i ; …5†

where ` is an angular momentum index and »i is a ®ctitious atomic-like density which
monitors the distribution of neighbouring atoms:

»i ˆ
X

j 6ˆi

exp … ¶2Rij†Fc…Rij†: …6†

Here ¶, ¬`, ­ `, ®` and ¯` are new parameters which are to be determined by ®tting to
®rst principles calculations and Rij is the distance between atoms i and j. Fc is a
smooth cut-o� function that restricts the calculation to about ®ve shells of neigh-
bouring atoms:

Fc…r† ˆ f1 ‡ exp ‰…r r0†L 1Šg 1: …7†
In these calculations we use r0 ˆ 14 Bohr and L ˆ 0:5 Bohr.

Within the non-orthogonal two-centre approximation we must specify the form
of both the SK hopping and the overlap integrals. We assume that these depend only
on the nature of the bonding orbital and the distance between the two atoms. For the
hopping integrals we take

Pi…r† ˆ …ai ‡ bir ‡ cir
2† exp … d2

i r†Fc…r†; …8†
where Fc is the same as in equation (7) and r is the distance between the atoms. We
write the overlap matrix elements in a similar form:

P 0
i …r† ˆ …a 0

i ‡ b 0
i r ‡ cir

02† exp … d 0
i

2r†Fc…r†: …9†
For tin we shall only consider the sp basis of the valence atoms; so Pi and P 0

i

represent the interactions ss¼, sp¼, pp¼, and ppp. The parameters ai, bi, ci, di, a 0
i ,

b 0
i , c 0

i and d 0
i are chosen to reproduce the results of a database of ®rst-principles

calculations, as outlined below.
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} 3. Computational details

3.1. Linearized augmented plane-wave calculations
In order to create a database for the TB method we performed a set of FP

linearized augmented plane-wave (LAPW) (Andersen 1975, Koelling and Arbman
1975, Wei and Krakauer 1985) calculations. In these calculations, we used a mu� n-
tin sphere radius RMT of 2.0 Bohr. This is small enough that the mu� n-tin spheres
do not overlap for any of our calculations, but large enough that no more than
0.05% of the 4s and 4p core electrons are outside the mu� n-tin sphere. These FP
calculations were carried out using a cut-o� KmaxRMT ˆ 8:5 to determine the size of
the secular equation, where Kmax is the magnitude of the largest k vector. The above
parameters were kept ®xed throughout the calculations for all the structures. We
used a regular mesh with 89 k points in the irreducible Brillouin zone for the fcc and

¬-Sn structures. In the sc and bcc structures we used regular meshes with 35 and 55 k
points respectively in the irreducible Brillouin zone. The band calculations are semi-
relativistic, with no spin±orbit splitting (Koelling and Harmon 1977), while the core
levels are treated fully relativistically. Except as noted below, the exchange and
correlation follow the Hedin±Lundqvist (1971) prescription.

We included the 4d semicore states of tin in the semirelativistic valence band,
including localized basis functions (Singh 1991). These states, although low in energy
and below the nominal sp3 valence states, have charge densities that reach out far
enough into the outer part of the mu� n-tin spheres that their e� ect cannot be
ignored. The semicore electronic contribution is especially important when the crys-
tal structures are known to be close in energy.

3.2. Tight-binding calculations
In our TB method, as outlined in } 2, we ®rst ®tted the SK parameters to LAPW

results from four crystal structures, namely fcc, bcc and sc structures using four
bands (one s and three p) for each k point, and the diamond structure ®tting eight
bands at each k point. We refer to these calculations as case 1. These calculations
were performed with a non-orthogonal Hamiltonian in the two-centre approxima-
tion, using a total of 41 parameters to be optimized: nine parameters for the on-site
terms (equation (5)), 16 parameters for the hopping integrals (equation (8)) and 16
parameters for the overlap integrals (equation (9)). The rms errors obtained in our ®t
are 1 mRy for the total energy and 25 mRy for the bands.

The case-1 parameters produce highly accurate electronic band structures for ¬-
Sn. However, using these parameters we found that the ­ -Sn structure was lower in
energy than ¬-Sn, contrary to experiment. This is not necessarily a failure of the TB
method, as this behaviour has been seen in FP all-electron calculations (Christensen
and Methfessel 1993)y. To check our results, we made a limited number of LAPW
calculations for the ­ -Sn phase and found that this structure was lower than ¬-Sn
when using the Hedin±Lundqvist (1971) local density approximation parametriza-
tion. Interestingly, our calculations using a generalized gradient approximation
(GGA) (Perdew 1991) density functional show the ­ -Sn phase to be higher in energy.
We shall discuss this behaviour in detail in a future paper.
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y In that case, the correct ordering was only obtained by adjusting the position of the 4d
states within the FP LMTO calculation.



We developed a `case-2’ set of TB parameters to take these results into account.
We ®t to the same LAPW results as above but shifted the total energy of the
diamond phase to reproduce the GGA energy di� erence between ¬- and ­ -Sn at
the experimental ­ -Sn volume. As we shall see below, these parameters are good for
studying the structural properties of tin. Unfortunately , they do not produce good
electronic band structures. We shall therefore use the case-1 parameters to study the
electronic behaviour of tin, and the case-2 parameters to study structural behaviour.y

} 4. Results and discussion

4.1. Equation of state
Figure 1 shows the phase diagram resulting from our case-2 TB parameters.

These parameters give the correct lattice equilibrium (table 1) and bulk modulus
(table 2) of both the ¬-Sn and ­ -Sn phases. Using these parameters, the equilibrium

­ -Sn phase unit cell is 12% smaller in volume than the equilibrium ¬-Sn unit cell, in
good agreement with the 10% reduction measured experimentally. The energy dif-
ference of 0.6 mRy between the ¬ and ­ phases compares favourably with the value
of 0.7 mRy found by Christensen and Methfessel (1993). Also note that the ¬-Sn
structure is lower in energy than any other structure, in agreement with the experi-
mental result showing that the diamond structure is the ground state of tin.
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Figure 1. Tin phase diagram of case 2. 1 Bohr is the radius of the electron orbital in the Bohr
model of the hydrogen atom and is equal to 0:529 10 10 m. 1 Rydberg is the binding
energy of an electron in a hydrogen atom and is equal to 13.606 eV.

yBoth sets of TB parameters are available from the World-Wide Web at
http://cst-www.nrl.navy.mil/bind/sn.html.

http://cst-www.nrl.navy.mil/bind/sn.html


The bulk properties resulting from case-2 calculations are summarized in table 2.
Our TB results were compared with LAPW, LMTO (Christensen and Methfessel
1993) and experimental values (when available). The agreement is very good.

Our results for the hcp structure are comparable with the FP-LMTO results of
Christensen and Methfessel (1993). For the other structures, fcc, bcc and sc, the
obtained bulk results are comparable between LAPW, TB and LMTO methods.
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Table 1. A comparison of the equilibrium lattice parameters
of various structures for tin. TB refers to our case-2 TB
parameters.

a0

Structure (Bohr) c=a Method

a-Sn 12.23 LAPW
12.24 TB
12.376 Othera

12.263 Experimentb

b-Sn 10.94 0.54 LAPW
10.95 0.53 TB
11.08 0.54 Othera

11.019 0.5455 Experimentb

Fcc 8.856 LAPW
8.898 TB
8.995 Othera

Hcp 6.215 1.65 TB
6.346 1.628 Othera

Bcc 7.03 LAPW
7.02 TB
7.09 Othera

Sc 5.695 LAPW
5.71 TB
5.778 Othera

aChristensen and Methfessel (1993).
bVillars and Calvert (1991).

Table 2. A comparison of the bulk moduli computed for various possible structures of tin.
Calculations are performed at the experimental room temperature volume, if one is
available. Otherwise, the calculations are performed at the LAPW equilibrium volume
described in table l, or the equilibrium volume from Christensen and Methfessel
(1993).

Bulk modulus (GPa)

Structure LAPW TB Othera Experiment

a-Sn 45 45 51 53a

b-Sn 66 58b

Fcc 63 51
Hcp 22 62
Bcc 58 57
Sc 57 75

aChristensen and Methfessel (1993).
bSimmons and Wang (1971).



A close examination of ®gure 1 shows that we correctly predict the phase transi-
tions of tin in the ¬-Sn ! ­ -Sn ! bct sequence. We ®nd that the ¬ ! ­ transition
occurs at 1 GPa. Note that at room temperature this transition occurs just below
1 GPa; so we are in good agreement with the experiment value. The volume change
at the transition is 23%, in good agreement with the experimental value. We also ®nd
evidence of a ­ -Sn ! bct phase transition at 20 GPa, with a volume change of 18%.
This is signi®cantly higher than the experimental value of 9.5 GPa. The bcc and bct
structures are comparable at pressures above about 10 GPa; so it is di� cult to say
where, or whether, the bct ! bcc phase transition takes place using our TB binding
parameters.

4.2. Electronic structure
Figure 2 shows both the LAPW and the TB band structures of the ¬-Sn phase at

the calculated equilibrium lattice constant a0 ˆ 12:23 Bohr using the case-1 TB para-
meters. These results are consistent with the fact that ¬-Sn is a semimetal. There is
good agreement between LAPW and TB valence bands, except that the lowest state
at is too high for the TB parameters. As is usual with semiconductors, an sp TB
Hamiltonian does not reproduce the conduction band as accurately as the valence
band (Bernstein et al. 2000).

The total densities of states (DOSs) for both the LAPW and the TB calculations
of the ¬-Sn structure at a0 ˆ 12:23 Bohr are presented in ®gure 3. The lowest-energy
peak is of s-like character. The second peak is a mix of s and p states and the
remaining peaks, which bracket the Fermi level, have p-like character. In both
methods we obtained very small DOSs near the Fermi energy. These features present
strong similarities to silicon (Papaconstantopoulo s 1986, Bernstein et al. 2000).
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Figure 2. Band structure of diamond structure tin (¬-Sn) at the experimental lattice
constant, 12.23 Bohr (1 Bohr ˆ 0:529 10 10 m): (ÐÐ), ®rst-principles LAPW calcu-
lations; (- - -), TB results. In both calculations we set the Fermi level to zero. The
energies are in rydberg (1 Ry ˆ 13:606 eV).



Figure 4 shows the bcc LAPW and TB band structures at the calculated equili-
brium lattice constant (a0 ˆ 7:02 Bohr), again using the case-1 parameters. Under
pressure, the Fermi level crosses the bands, showing the metallic character observed
experimentally. The bcc LAPW and TB DOSs are presented in ®gure 5, again at the
calculated equilibrium lattice constant.

4.3. Elastic constants and phonon frequencies
The elastic constants for the ¬ and ­ phases of tin were calculated from the case-

2 TB parameters, as were selected phonon frequencies of ¬-Sn. As noted above, these
parameters give better mechanical properties for tin, at the expense of less accurate
band structure properties.

The bulk modulus is determined from the energy E…V†, which is found by ®xing
the volume of the unit cell and adjusting all the free lattice parameters and internal
parameters to minimize the total energy at that volume. Then

B…V† ˆ VP 0…V† ˆ VE 00…V†: …10†
Here we determine B…V† by ®tting E…V† to a Birch (1978)-like equation of state
(Mehl 1993, Mehl et al. 1994) and di� erentiating that analytic equation.

The method for obtaining the other elastic constants has been described by Mehl
(1993) and Mehl et al. (1994); for a given crystal structure, we calculate the energy as
a function of the elastic strain components ei …i ˆ 1; . . . ; 6). The elastic constants are
the second-order coe� cients of an expansion of the energy in terms of the ei:

E…feig† ˆ E…0† PV
X3

iˆ1

ei ‡ 1
2
V

X6

iˆ1

X6

jˆ1

Cijeiej ‡ O‰e3
i Š; …11†
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Figure 3. Electronic DOSs of diamond structure tin (¬-Sn) at the experimental lattice con-
stant (12.23 Bohr): (ÐÐ), ®rst-principles LAPW calculations; (- - -), TB results. In
both calculations we set the Fermi level to zero.
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Figure 5. Electronic DOSs of bcc tin at the lattice constant a ˆ 7:02 Bohr: (ÐÐ), ®rst-
principles LAPW calculations; (- - -), TB results. In both calculations we set the
Fermi level to zero.

Figure 4. Band structure of bcc tin at the lattice constant a ˆ 7:02 Bohr: (ÐÐ), ®rst-prin-
ciples LAPW calculations; (- - -), TB results. In both calculations we set the Fermi level
to zero.



where V is the volume of the unit cell and P is the hydrostatic pressure at that
volume. Note that the energy E…feig) is the energy of the unit cell with the primitive
vectors ®xed, but any free atomic (internal) coordinates must be adjusted to mini-
mize the total energy.

Since the ¬-Sn (diamond) structure has a cubic lattice, there are only three
independent elastic constants C11, C12 and C44, with the bulk modulus (10) related
to the elastic constants by

B ˆ 1
3
…C11 ‡ 2C12†: …12†

The strain parameters needed to calculate these elastic constants are shown in table
3. Note that in the diamond structure the calculation of the bulk modulus and
C11 C12 requires no relaxation of the atomic positions, but the calculation of
C44 requires the relaxation of one internal coordinate.

The ­ -Sn structure is tetragonal ; so there are six independent elastic constants:
C11, C12, C13, C33, C44 and C66. The bulk modulus can be found by the relationship

B ˆ …C11 ‡ C12†C33 2C2
13

C11 ‡ C12 4C13 ‡ 2C33

: …13†

The strains needed to calculate these elastic constants are described in table 4.
Several of these strains also require internal relaxations.

Introduction of the elastic strains feig may reduce the symmetry of the crystal.
For each strain, tables 3 and 4 show the space group of the resulting crystal, and the
Wycko� notation of the atomic positions (Hahn 1983)y.

We evaluated the elastic constants of ¬-Sn at the experimental lattice constant,
12.26 Bohr. Our results are compared with experiment (Slutsky and Garland 1959) in
table 5. The agreement with experiment is excellent.

The elastic constants of ­ -Sn are also computed at the experimental volume.
Table 6 compares our results to an average of experimental room-temperature values
(Simmons and Wang 1971). The agreement here is not as good as in table 5 largely
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Table 3. The strain parameters needed to generate the elastic constants of tin in the diamond
structure. For each strain we also list the space group of the strained lattice (Hahn
1983), the Wycko� notation for the atomic positions, and the number of internal
parameters which must be varied to obtain the relaxed structural energy.

Elastic Strain Space Wycko� Number of internal
constant parameters group notation parameters

B (equation (12)) See text Fd33m…O7
h† 8a 0

C11 C12 e1 ˆ x Fddd…D24
2h† 8a 0

e2 ˆ x

e3 ˆ x2…1 x2† 1

C44 e6 ˆ x Imma…D28
2h† 4e 1

e3 ˆ x2…4 x2† 1

y Space group operations and Wyckoff positions may also be obtained from the Bilbao
Crystallographic Server at http://www.cryst.ehu.es/.

http://www.cryst.ehu.es/.


because we have not included a large amount of information about the LAPW ­ -Sn
results in the ®t. We note that, in spite of the fact that C13 may be negative, our TB
elastic constants are consistent with the fact that the ­ -Sn structure is a metastable
state.

We calculated phonon frequencies for ¬-Sn by the frozen-phonon method (Klein
and Cohen 1992), using supercells and displacements generated by the FROZSL
packagey. The results are compiled in table 7, where they are also compared with
experiment (Price et al. 1971). Our TB Hamiltonian consistently overestimates the
phonon frequencies of ¬-Sn. These results could be substantially improved by per-
forming some ®rst-principles calculations, for example of the Raman frequency at ,
and including the results in the ®tting database.
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Table 4. The strain parameters needed to generate the elastic constants of tin in the b-Sn
structure. For each strain we also list the space group of the strained lattice (Hahn
1983), the Wycko� notation for the atomic positions, and the number of internal
parameters which must be varied to obtain the relaxed structural energy.

Elastic Strain Space Wycko� Number of internal
constant parameters group notation parameters

B (equation (13)) See text I41=amd…D19
4h† 0

C11 ‡ C12 e1;2 ˆ …1 ‡ x† 1=3
1 I41=amd…D19

4h† 4a 0

4C13 ‡ 2C33 e3 ˆ …1 ‡ x†2=3
1

C33 e3 ˆ x I41=amd…D19
4h† 4a 0

C11 e1 ˆ x Imma…D28
2h† 4e 1

C11 C12 e1 ˆ e2 ˆ x Imma…D28
2h† 4e 1

e3 ˆ x2…1 x2† 1

C44 e4 ˆ x C2=m…C3
2h† 4i 2

e3 ˆ 1
4 x2

C66 e6 ˆ x Fddd…D24
2h† 8a 0

e3 ˆ x2…4 x2† 1

Table 5. The elastic constants of a-Sn calculated using the
methods of Mehl (1993) modi®ed for the diamond struc-
ture, as outlined in } 4.1. Elastic constants were deter-
mined at the experimental room-temperature lattice
constant, 12.26 Bohr, using the case-2 TB parameters.
The experimental results are from Slutsky and Garland
(1959).

TB Experiment

B (GPa) 42:6 1:0 46:53 0:5
C11 C12 (GPa) 37:6 0:7 30:24 1:1
C11 (GPa) 67:7 1:5 66:67 0:7
C12 (GPa) 30:1 1:2 36:45 0:4
C44 (GPa) 38:0 1:0 30:20 0:2

y L. L. Boyer and H. T. Stokes provided the FROZSL code.



4.4. Molecular dynamics
The NRL-TB method is su� ciently compact to make molecular dynamics cal-

culations feasible on a high-performance multiprocessing supercomputer. Using the
tight-binding molecular dynamics code (TBMD) (Kirchho� et al. 2001) we per-
formed calculations on supercells containing 686 atoms of tin in the diamond struc-
ture, using the case-2 parameters. The unit cell was ®xed, with the atoms allowed to
move freely in the unit cell subject to periodic boundary conditions. Typical calcula-
tions ran for 2000 time steps, at 2 fs per time step. The ®rst 1000 time steps were used
to equilibrate the system, and the remaining time steps were used in computing
thermal averages. Given the ®nite system size, this method results in temperature
¯uctuations around the target temperature. Thus a typical 150 K simulation had an
average temperature of 149 K, with a standard deviation of 12 K, and a 500 K
simulation had an average temperature of 494 K and a standard deviation of 24 K.

Figure 6 shows the averaged electronic DOS of ¬-Sn at a density corresponding
to the fcc lattice constant of 12.261 Bohr, and at several temperatures between 150
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Table 6. Elastic constants of b-Sn, using the case-2 TB parameters
and computed at the TB equilibrium volume, compared
with an average of room-temperature experimental values
(Simmons and Wang 1971).

TB Experiment

B (GPa) 98 53
C11 (GPa) 122 32 78 6
C12 (GPa) 67 71 45 16
C13 (GPa) 24 35 33 7
C33 (GPa) 210 12 100 19
C44 (GPa) 22 4 27 13
C66 (GPa) 38 1 26 17

Table 7. Phonon frequencies of a-Sn at the experimental lattice
constant, calculated using the case-2 TB parameters and
compared with experiment (Price et al. 1971). Frequencies
are computed within the frozen-phonon approximation
(Klein and Cohen 1992) using supercells and displacements
generated by the FROZSL code.

Frequency (THz)

TB Experiment

(0, 0, 0) 7.29 6.00

X1 5.42 4.67

X3 (2p=a, 0, 0) 1.51 1.25

X4 7.35 5.51

L1 7.29 4.89

L 0
2 …p=a; p=a; p=a) 3.27 4.15

L3 1.33 1.00

L 0
3 7.37 5.74
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Figure 6. The thermally averaged electronic DOSs of ¬-Sn, using the case-2 TB parameters,
calculated using a 686-atom supercell at a density corresponding to an fcc lattice
constant of 12.26 Bohr. The energies have been shifted so that " ˆ 0 corresponds to
the static lattice Fermi level.

Figure 7. The Debye±Waller factor B, computed from our TBMD simulations (*) via
equation (14) and compared with experiment ( ) (Peng et al. 1996): (ÐÐ), linear
®t to the experimental data.



and 500 K. We see a smearing of the DOSs in the pseudogap near the Fermi level,
and a shift of the minimum of the DOS away from the Fermi level.

Finally, we have used the TBMD to compute the mean square deviation of the
atoms. This is connected to the Debye±Waller factor B by the relation (Peng et al.
1996)

B ˆ 8p2hu2
xi ˆ 8

3
p2hjrj2i; …14†

where hu2
xi is the thermal average of the mean square displacement in the x direction.

By symmetry, this is just one third of the total mean square displacement of the
atoms, hjrj2i. We compare our results with experiment (Peng et al. 1996) in ®gure 7.
Up to room temperature, our results are consistent with the experimental data.

} 5. Summary
The NRL-TB method has been successful in describing the two known low-

pressure stable structures of tin, the ¬-Sn (grey) phase below 13°C and zero pressure
and the ­ -Sn (white) phase at atmospheric pressure above 13°C. The bulk TB prop-
erties were found to be in excellent agreement with experiment and ®rst-principles
calculations for all the phases. The calculated band structures correctly predict a
semiconductor with zero gap in the ¬-Sn crystal structure, and a metal in the bcc
structure. We correctly predict the phase transition sequence ¬-Sn ! ­ -Sn ! bct,
but we cannot distinguish the bct ! bcc transition. The calculated TB Raman and
zone-boundary phonon frequencies are consistently higher than experiment. Our
molecular dynamics simulations are consistent with experiment, as evidenced by
the behaviour of the Debye±Waller B factor as a function of temperature.

In conclusion, the present work has expanded the range of materials to which the
NRL-TB method has been applied successfully, suggesting that its extension to more
complicated structures and to binary compounds will produce satisfactory results as
well.
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