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Applications of the NRL tight-binding method to magnetic systems
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The NRL developed tight-binding method has been very successful in describing the properties of
nonmagnetic elemental metals and semiconductors with accuracy comparable to first-principles
methods. In this article we discuss extensions of the method to magnetic systems. We first show that
the method correctly predicts equilibrium ground state structures, elastic constants, and phonon
frequencies in ferromagnetic iron. We also show how the magnetic calculations can be extended to
noncollinear systems, focusing on the electronic behavior of iron. ©2001 American Institute of
Physics. @DOI: 10.1063/1.1356031#
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I. INTRODUCTION

Spin-dependent density functional theory~SDFT!,1 when
coupled with an appropriate exchange-correlation fu
tional,2 provides an excellent framework for the firs
principles study of magnetic systems. The original formu
tion of von Barth and Hedin1 even included noncollinea
magnetization. Unfortunately SDFT cannot be used to st
large-scale magnetization because, in most practical for
lations, the computational time scales with the cube of
number of atoms. In practice one can study systems con
ing on the order of 100 atoms or less. Thus large magn
clusters and the motion of bulk domain walls is beyond
current capabilities of SDFT.

There has been extensive work showing that nonpo
ized density functional theory~DFT! results can be used as
database to produce parametrized atomistic potentials w
can be used to study large systems. Predominant am
these is, of course, the embedded atom method3,4 and its
generalizations.5 Extensions for magnetism can be made
the same fashion. For example, Krasko6 has developed a
semiempirical method for determining the magnetic ene
in iron from a Stoner model. This allows one to use the sa
potentials for both magnetic and nonmagnetic systems.

While these parametrized atomistic models are
tremely valuable, they are not based on quantum mecha
but only fitted to a database of results which contains fi
principles and/or experimental energies. Thus these mo
will fail unpredictably when one is calculating configuratio
which are not ‘‘close’’ to the fitted database.

Parametrized tight-binding~TB! methods, on the othe
hand, implicitly include quantum mechanical features. T
TB method developed at the Naval Research Labora
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~NRL-TB!7 has been shown to accurately predict corr
ground state structures, elastic constants, phonon freq
cies, stacking fault energies,8 surface energies, and vacanc
formation energies in transition metals,7 the heavier row IIIA
metals,9 carbon and silicon,10 and lead.11 This article pre-
sents an extension of the tight-binding method to magn
systems, including noncollinear spins.12

II. EXTENSION OF THE TIGHT-BINDING METHOD TO
MAGNETIC SYSTEMS

The formalism of the NRL-TB has been presented
detail elsewhere.7 Here we note that it is a two-center non
orthogonal Slater–Koster13 method with environmentally
sensitive on-site parameters, and otherwise only discuss
changes needed to implement spin dependent polarizatio

In collinear SDFT, the total energy of a system can
written as

E@n↑ ,n↓#5(
i

@«↑ i f ~«↑ i2m!1«↓ i f ~«↓ i2m!#

1G@n↑ ,n↓#, ~1!

where«↑ i and «↓ i are the eigenvalues for the majority an
minority spin states, respectively,f (x) is a Fermi broadening
function,14 m is the Fermi level,n↑ and n↓ are the electron
densities of the majority and minority states, andG@n↑ ,n↓#
is the SDFT energy not included in the band structure su
We eliminate the latter term by defining a potential shift

V05G@n↑ ,n↓#/N, ~2!

whereN is the total number of electrons in the system. W
shift all of the eigenvalues and the Fermi level byV0 :

«↑ i8 5«↑ i1V0 , «↓ i8 5«↓ i1V0 , and m85m1V0 ~3!
0 © 2001 American Institute of Physics
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so that the total energy~1! becomes

E@n↑ ,n↓#5(
i

@«↑ i8 f ~«↑ i8 2m8!1«↓ i8 f ~«↓ i8 2m8!#. ~4!

We assign the polarization dependence to the on-
terms, which are sensitive to the neighboring environme
We therefore define two ‘‘densities,’’r↑ and r↓ , for each
atom:

r (↑,↓) i5(
j Þ i

exp~2l↑,↓
2 uRi2Rju!F~ uRi2Rju!, ~5!

where thel↑,↓ are to be fit,Ri is the position of atomi , and
F(R) is a cutoff function which vanishes forR.Rcut.

7 Here
we setRcut516.5 Bohr. These densities then control the o
site parameters for atomi by

h(↑,↓)l i5a(↑,↓)l 1b(↑,↓)l r (↑,↓)
2/3 1c(↑,↓)l r (↑,↓)

4/3

1d(↑,↓)l r (↑,↓)
2 , ~6!

where l is the angular momentum of the orbital, and t
variousa, b, c, andd are fitting parameters. Here we restri
ourselves tol 5s, p, or d. For nonmagnetic calculation
(n↑5n↓) we average the above on-site parameters.

The two-center hopping and overlap parameters are
spin-independent, and have the quadratic form used in
~11! of Ref. 7. All of this leads to 106 parameters which a
used to reproduce the volume and structural dependenc
the electronic eigenvalues and total energies found in a
tabase of first-principles results. For iron we used calcu
tions from the ferromagnetic bcc phase and the nonmagn
fcc and bcc phases. The method for determining the par
eters is described in Ref. 7. The reliability of these para
eters will be described below.

Pickett12 has shown that the atomic moment approxim
tion ~AMA ! to the noncollinear spin problem can be impl
mented in a parametrized tight-binding scheme. A gen
matrix element between theL (5l ,m) orbital of atomi and
the L8 (5l 8,m8) orbital of atomj can be written as

hiL , jL 85t iL , jL 8s021/2DiL , jL 8•s, ~7!

where s is the Pauli spin matrices andDiL , jL 8 is the ex-
change splitting, which is assumed to be in the direction
the magnetic moment. We determinet andD from the spin-
polarized tight-binding matrix elements above by aligni
the spins, and hence all of theD, in the ẑ direction. Then

t iL , jL 851/2~h↑ iL , jL 81h↓ iL , jL 8!, ~8!

and the magnitude of the exchange splitting is just

D iL , jL 851/2~h↓ iL , jL 82h↑ iL , jL 8!. ~9!

Note that the spin polarization only affects the on-site par
the Hamiltonian~6!, soD is diagonal.

III. APPLICATION TO IRON

The first-principles energies and electronic eigenval
in our database were computed using the full-potential
earized augmented plane wave~LAPW! method15,16 and the
Perdew–Wang generalized gradient approximation for
exchange and correlation energy.2 We also performed first-
Downloaded 06 Sep 2001 to 132.250.15.162. Redistribution subject to A
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principles calculations for the hypothetical ferromagnetic
phase, but these were not included in the fit. In Fig. 1
show the energy/volume behavior resulting from the fit. T
interesting thing to note here is the behavior of fcc iro
First-principles calculations have shown that fcc iron ha
high-spin and a low-spin~nearly nonmagnetic! solution. Our
calculations show only the lowest energy phase as a func
of volume. Note that our ferromagnetic TB calculations tra
the high-spin LAPW solution, while the nonmagnetic calc
lation tracks the low-spin LAPW solution.

We used the NRL-developed TB program ‘‘STATIC’’ 17

to calculate the elastic constants and some phonon freq
cies of bcc iron at the equilibrium volume. These results
compared to experiment18,19 in Table I. The agreement is
impressive, since none of these calculations were include
the fit. This supports our belief that the tight-binding para
eters are transferable to systems which are not inclu
within the fit.

We plan to use the noncollinear spin theory of Sec. II
study the behavior of magnetic domain walls in iron. To th
end, we present here a test case, using a two atom sim
cubic supercell of bcc iron. One of the atoms in the unit c
has its spin vector aligned along theẑ axis, and we tilt the
other atom so that its spin is at an angleu to theẑ axis. Since
we were only concerned with the behavior of the electro
structure, for these calculations we used a set of parame
which were fit to only ferromagnetic and nonmagnetic b
iron. Figure 2 shows the resulting density of states wheu
5(45° and 90°). Note the development of a pseudogap
below the Fermi level asu increases. This gap becomes mo
pronounced as we approach the antiferromagnetic stateu
5180°).

FIG. 1. Comparison of LAPW~points! and tight-binding calculations~lines!
of the total energy of iron. The solid line is the ferromagnetic bcc phase.
dotted~highest! line is the nonmagnetic bcc phase. The other lines repre
the TB ferromagnetic~— - —! and nonmagnetic~- - - -! fcc phases. The
LAPW phases match the adjacent TB lines.

TABLE I. Elastic constants~in GPa! and high-symmetry phonon frequen
cies~in cm21! of bcc ferromagnetic iron at the experimental lattice consta

Elastic constants Phonon frequencies

TB Exp. ~Ref. 18! k point TB Exp.~Ref. 19!

C11 223 237 H 289 286
C12 95 141 P 262 240
C44 78 116
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp



n

f

i

6882 J. Appl. Phys., Vol. 89, No. 11, 1 June 2001 Mehl et al.
FIG. 2. The electronic density of
states for a two atom supercell of iro
where one spin is in the ‘‘up’’ direc-
tion (ẑ) and the other is at an angle o
u. The ‘‘up’’ and ‘‘down’’ densities of
state are projections relative to theẑ
axis. The vertical line is the Ferm
level.
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IV. SUMMARY

We have shown that the NRL tight-binding method c
be extended to handle both collinear and noncollinear sp
The method properly predicts the behavior of ferromagn
fcc iron, including the low- and high-spin regions. In add
tion, the computed elastic constants and phonon frequen
have an accuracy comparable to those we found for nonm
netic materials. Finally, we show that the method can
applied to noncollinear systems.
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