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Abstract

We use the first-principles all-electron linearized augmented plane-wave (LAPW)
method to perform self-consistent total-energy electronic structure calcula-
tions for the vacancy formation energy in aluminum in the supercell approx-
imation. The method makes no uncontrolled approximations for the shape
of the potential. Supercells with 4, 8, 16, and 27 sites are used. When no
relaxation is allowed, the formation energy is 0.87, 0.88, 0.89 and 0.86 eV for
the 4-, 8-, 16-, and 27-site supercells, respectively. When some of the atoms
are allowed to relax about the vacancy the formation energy is lowered by
0.05 eV in the 16-site cell and 0.03 eV in the 27-site cell. These results are in
semiquantitative agreement with the experimental formation energy of 0.66
eV. The dependence of the formation energy on cell size is discussed.

∗Appears in Physica B 172, 211 (1991).
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1 Introduction

Point defects in metals are of interest in many applications of metal physics.
In particular, the problem of calculating the formation energy of a vacancy in
aluminum has received considerable attention.[1, 1, 3, 4] These calculations
were all carried out with various forms of pseudopotentials, on supercells
including up to 27 sites. As shown by Jansen and Klein[4] the formation
energy is extremely sensitive to the choice of the pseudopotential. We can,
however, perform all-electron calculations on these supercells, and since there
need be no fitting to a pseudopotential, the resulting formation energy is un-
ambiguous if the supercell is large enough. Thus, all-electron total-energy
calculations can be of use not only in their own right, but also as bench-
marks for pseudopotential calculations and empirical schemes such as the
embedded-atom method.[5]

The strain field associated with the vacancy is of interest in elasticity
theory. We can gain some insight into the range of the field by noting that
the 16- and 27-site supercells allow some of the atoms to relax about the
vacancy. This relaxation can be calculated by determining the configuration
of the supercell that minimizes the total energy consistent with the allowed
symmetry around the vacancy.

This paper presents a first-principles all-electron calculation of the va-
cancy formation energy in aluminum. We model the local neighborhood
of the vacancy by removing aluminum atoms from the room temperature
equilibrium FCC lattice, forming a periodic supercell. In general, the inter-
action between the vacancies will cause the calculated formation energy to
depend upon the size of the supercell. In an effort to determine the size of
this interaction we study supercells containing 4, 8,16, and 27 FCC sites.
Larger supercells are computationally difficult because of the constraints of
computer memory and available execution time. The self-consistent charge
density and total energy are calculated within the local-density approxima-
tion (LDA) to density functional theory (DFT)[6] by a full potential version
of the linearized augmented plane-wave (LAPW) method.[7, 8] The method
makes no uncontrolled approximations other than the LDA. In particular,
there is no shape approximation to the potential.
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Table 1: The supercell parameters.
Number Supercell Cubic Distance Relaxation Allowed

of symmetry lattice between
sites constant vacancies First Second

(Å) (Å) neighbors neighbors
4 SC 4.05 4.05 No No
8 FCC 8.10 5.73 No No

16 BCC 8.10 7.01 Yes No
27 FCC 12.15 8.59 Yes Yes

2 Theory

We study the vacancy in aluminum by a supercell method; that is, we begin
with the periodic FCC aluminum lattice and remove atoms in a periodic array
so that each supercell of the lattice contains one vacancy. The supercells used
are listed in Table 1 and shown in Figure 1. For a supercell containing N
sites, the energy required to form a vacancy is

EFermi = E(N − 1, 1)− [(N − 1)/N ]E(N, 0) , (1)

where E(N−V, V ) is the total energy of an N-site supercell with V vacancies.
In the limit of large N this will converge to the formation energy for an
isolated vacancy. All calculations were carried out at constant volume, in
this case at the experimental FCC lattice constant aFCC = 4.05Å. In this
we follow the procedure of Jansen and Klein.[4] The computations could also
have been done at constant Al density,[3] but in the limit of large supercells
the methods must agree. We choose the constant-volume method because
we want the environment around the vacancy to mimic that of the isolated
vacancy as closely as possible.

Calculations were done using the first-principles LAPW method[7, 8] to
solve the equations of density functional theory in the LDA.[6] No other
uncontrolled approximations were made. Inside the muffin tins the wave
functions were expanded to include all angular momenta up to ` = 8, and
the potential was expanded up to ` = 4. In the interstitial the potential
was expanded into a Fourier series using approximately 400 plane waves
for the primitive FCC lattice. Brillouin zone sums were determined using
a k-point mesh generated by the method of Monkhorst and Pack[9] and
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Figure 1: The supercells used in the calculations are shown. The solid circles
represent the occupied sites, the open circles the vacancies. The supercells
contain (a) 4, (b) 8, (c) 16, and (d) 27 sites. For clarity in (b)-(d) only one
eighth of the cubic unit cell is shown. The other parts of the cube may be
generated by applying the cubic symmetry operations about the vacancy in
the upper left-hand corner in each cell. The arrows in (c) and (d) show the
possible relaxations of the atoms around the vacancies (not to scale). In (d)
we show the possible relaxations around only one of the vacancies.
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checked for satisfactory convergence by doing the calculations for various k-
point meshes. To facilitate k-point convergence, the electronic states were
populated by weighting with a Fermi distribution function corresponding to
a fictitious temperature of 0.002 Ry. We chose the plane-wave cut-off so that
there were approximately 40 LAPW basis functions per atom. While this is
rather small, previous calculations showed that this is an adequate basis set
for calculation of such properties as the elastic constants.[10]

The initial calculations were done without relaxation. That is, all of the
atoms occupied FCC lattice sites, even in the presence of the vacancy. As we
shall see, this produces the major contribution to the formation energy. Fur-
ther calculations allowed the atoms nearest to the vacancy to relax. The only
restriction placed on the relaxation was that the vacancy remain a point with
the full lattice symmetry. Because of this restriction, relaxation is allowed
only for supercells with 16 or more sites. In the 16-site lattice there is one
free parameter, d1, the distance between the vacancy and the atoms on the
nearest-neighbor sites. When we increase the supercell to 27 sites we add a
new parameter d2, the distance between the vacancy and the second-neighbor
atoms. When there is no relaxation we have

d1 → d10 ≡ a/
√

2 , (2)

and
d2 → d20 ≡ a (3)

where a is the lattice parameter of the simple FCC lattice. For each lattice
we calculated the total energy at various values of the free parameters. We
then fitted these energies to polynomials in x and y, where

d1 = d10(1− x) , (4)

and
d2 = d20(1− y) , (5)

with y vanishing identically for the 16-site supercell. These polynomials were
then minimized to determine the minimum-energy structure, characterized
by the parameters x0 and y0. We can then calculate the change in energy
resulting from relaxation:

ER(N) = E(N, 0, 0)− E(N, x0, y0) , (6)
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Table 2: Unrelaxed formation energies
Number Number Eform

of of (eV)
sites k-points

4 56 0.856
4 165 0.866
8 28 0.860
8 85 0.882

16 20 0.855
16 55 0.895
27 10 0.781
27 28 0.933
27 60 0.862
27 110 0.864

where E(N, x, y) is the self-consistent total energy of the N-site supercell
with vacancy-neighbor distances given by (4) and (5). The formation energy
can then be calculated from the expression

Eform(N) = E
(0)

form(N)− ER(N) , (7)

where E
(0)

form(N) is the formation energy (1) of the unrelaxed lattice.

3 Results

We used the LAPW method to calculate the vacancy formation energy for
supercells of 4, 8, 16, and 27 atoms, as shown in Table 1 and Figure 1. Our
first set of calculations did not allow the atoms close to the vacancy to relax,
even when this was allowed by symmetry. To determine the formation energy
accurately we did our calculations for at least two different k-point meshes
in each of the supercells. As seen in Table 2, when the k-point mesh is dense
enough, the unrelaxed formation energy is 0.88 0.02 eV, independent of the
supercell size, at least for supercells containing up to 27 sites. This behavior
is in agreement with the findings of Jansen and Klein[4] although we do not
obtain their value for the formation energy.

The 16- and 27-site supercells allow some relaxation about the vacancy.
As outlined in the preceding section, we determined the values of (x, y) that
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Table 3: Relaxation about the vacancy: d1 = 2.86(1− x)Å, d24.05(1− y)Å.
Number Number x0 y0 ER Eform,

of of (eV) (eV)
sites k-points

16 20 0.015 0 0.059 0.796
16 55 0.014 0 0.052 0.843
27 10 0.012 0.003 0.037 0.744
27 28 0.010 0.003 0.027 0.906
27 60 0.010 ≈ 0.0 0.026 0.836

minimized the total energy. As can be seen in Table 3, the relaxation energy
is approximately 0.05 eV in the 16-site supercell and 0.03 eV for the 27-
site cell, both in the direction lowering the formation energy. These energy
differences are somewhat smaller than the values found by Gillan[3] (0.098
and 0.084 eV, respectively). In any case, the relaxation energy changes the
formation energy by a very small amount. Useful information can also be
gained from the parameters (x0, y0) themselves. In the 16-site supercell the
nearest neighbors contract around the vacancy, d1 changing by a little more
than 1%. In the 27-site cell the contraction is also approximately 1%, while
the second-nearest neighbors contract by a smaller amount. The amount of
this small contraction is very sensitive to the k-point mesh, and the value of
0.3% must be regarded as preliminary.

4 Discussion

Including relaxation, our 16- and 27-site supercell results indicate that the
vacancy formation energy in aluminum is 0.84 eV, and that the atoms nearest
the vacancy relax towards the vacancy, reducing d1 by about 1%. Considera-
tion of the k-point convergence in Tables 2 and 3 leads us to conclude that the
numerical error in the formation energy is no greater than 0.04 eV. Thus,
our calculated formation energies are in semi-quantitative agreement with
the accepted experimental value of 0.66 eV[11, 12, 13] and the theoretical
predictions of Gillan[3] (0.56 eV) or Jansen and Klein[4] (0.52 eV).

The difference between the various theoretical calculations is not sur-
prising. Jansen and Klein showed that the formation energy was sensitive
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to the choice of pseudopotential. Their value of 0.52 eV was determined
using Hamann-Schluter-Chiang[14] pseudopotentials fitted to the Bachelet-
Hamann-Schluter form.[15] However, when the actual Bachelet et al. pseudo-
potentials[15] were used, the formation energy was found to be 1.0 eV. Our
all-electron calculation should not suffer from these difficulties.

Supercell size effects may play an important roll. An embedded-atom
functional fitted to an aluminum vacancy formation energy of 0.73 eV yields
a formation energy of 0.91 eV in the unrelaxed 16-site supercell, lowering to
0.885 eV when d1 is allowed to relax.[16] Since these energies are in rather
good agreement with our calculation, it seems likely that even in the 27-site
supercell there is a significant vacancy-vacancy interaction, on the order of
0.1 eV. This would lower our calculated formation energy to 0.74±0.04 eV, in
much better agreement with experiment. In this case, the results of Table 2
and the calculations of Jansen and Klein[4] indicate that the vacancy-vacancy
interaction is approximately independent of distance for periodically ordered
vacancies separated by less than about 10Å. We may not be able to con-
firm this result by first-principles calculations in the near future. The next
supercell in this system has 32 sites with the vacancies sitting on a simple
cubic lattice of side a = 2aFCC8.10Å. Unfortunately, the vacancy-vacancy
distance is smaller than in the 27-site supercell, where the ”close-packed”
vacancies are separated by 8.59Å. The next larger supercell contains 64 sites,
with the vacancies sitting on an FCC lattice of side a = 3aFCC. Since
the computer-memory requirements of the all-electron methods scale as the
square of the number of atoms and the execution time scales as the cube, the
64-site supercell will strain the capabilities of the current generation of super-
computers. Further use of the embedded-atom method[5] may be needed to
model the behavior of the formation energy as a function of cell size. Other
first-principles methods, such as Greens functions approaches, may be more
appropriate for improved accuracy in the calculation of the isolated vacancy
formation energy.[17]
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